A Model for Learning Systems
نویسندگان
چکیده
A model f o r l e a r n i n g sys tems i s p r e s e n t e d , and r e p r e s e n t a t i v e A I , p a t t e r n r e c o g n i t i o n , and c o n t r o l sys tems a r e d i s c u s s e d i n t e rms o f i t s f r a m e w o r k . The model d e t a i l s t h e f u n c t i o n a l components f e l t t o b e e s s e n t i a l f o r any l e a r n i n g s y s t e m , independent o f t h e t e c h n i q u e s used f o r i t s c o n s t r u c t i o n , and t h e s p e c i f i c env i r onmen t i n wh i ch i t o p e r a t e s . These components a re P r f o r m a n c e e l e m e n t , i n s t a n c e s e l e c t o r , c r i t i c , e a r n i n g e l e m e n t , b l a c k b o a r d , and w o r l d m o d e l . C o n s i d e r a t i o n o f l e a r n i n g system d e s i g n l e a d s n a t u r a l l y t o t h e concep t o f a l a y e r e d s y s t e m , each l a y e r o p e r a t i n g a t a d i f f e r e n t l e v e l o f a b s t r a c t i o n . D e s c r i p t i v e Terms: a d a p t a t i o n , l e a r n i n g , c o n c e p t f o r m a t I o n , i n d u c t i o n , pe r fo rmance e l e m e n t , i n s t a n c e s e l e c t o r , c r i t i c , l e a r n i n g e l e m e n t , b l a c k b o a r d , w o r l d m o d e l , m u l t i l a y e r e d sys tems . 1 I n t r o d u c t i o n L e a r n i n g sys tems have been t h e s u b j e c t o f w ide r e s e a r c h i n t e r e s t f o r a number o f y e a r s . The te rms a d a p t a t i o n , l e a r n i n g , c o n c e p t f o r m a t i o n , i n d u c t i o n , s e l f o r g a n i z a t i o n , and s e l f r e p a i r have a l l been used i n t h e c o n t e x t o f t h i s s t u d y . L e a r n i n g system (LS) r e s e a r c h has been conduc ted w i t h i n many d i f f e r e n t s c i e n t i f i c c o m m u n i t i e s , however , and t h e s e t e rms have come to have a v a r i e t y o f mean ings* I t i s t h e r e f o r e o f t e n d i f f i c u l t f o r members o f t h e s e commun i t i es t o r e c o g n i z e t h a t p rob lems w h i c h appear u n r e l a t e d a s a r e s u l t o f v a r i a t i o n s i n t e r m i n o l o g y may i n f a c t be i d e n t i c a l . L e a r n i n g system models as w e l l a r e o f t e n t uned t o t h e r e q u i r e m e n t s o f a p a r t i c u l a r d i s c i p l i n e and a r e not s u i t a b l e f o r a p p l i c a t i o n i n r e l a t e d d i s c i p l i n e s . We have t h e r e f o r e s y n t h e s i z e d a new LS model w h i c h p r o v i d e s a common language f o r u n i f i e d c h a r a c t e r i z a t i o n o f sys tems c o n s t r u c t e d f rom a number o f d i f f e r e n t p e r s p e c t i v e s . T h i s model encourages e x a m i n a t i o n o f t h e s t r e n g t h s and weaknesses o f t h e i n d i v i d u a l f u n c t i o n a l components necessa ry f o r any l e a r n i n g s y s t e m . Because t h e model enab les a d e s i g n e r to i s o l a t e t h e s e f u n c t i o n a l components and s p e c i f y t h e i n f o r m a t i o n wh i ch must be a v a i l a b l e t o them", i t i s p a r t i c u l a r l y u s e f u l a s a parad igm f o r new l e a r n i n g s y s t e m s . I n t h e c o n t e x t o f t h i s p a p e r , a l e a r n i n g system i s c o n s i d e r e d to be any system wh ich uses i n f o r m a t i o n o b t a i n e d d u r i n g one i n t e r a c t i o n w i t h i t s e n v i r o n m e n t t o improve i t s pe r fo rmance d u r i n g f u t u r e i n t e r a c t i o n s . T h i s d e f i n i t i o n i s i n t e n t i o n a l l y b road and may i n c l u d e man/machine systems i n wh i ch humans t a k e on a c t i v e r o l e s as r e q u i r e d f u n c t i o n a l components• 11 T h i s work was s u p p o r t e d by t h e Advanced Research P r o j e c t s Agency under c o n t r a c t DAHC 1573-C-0UJ5 . t h e N a t i o n a l I n s t i t u t e s o f H e a l t h under g r a n t RR 00612-07 . t h e Nava l A i r Systems Command under c o n t r a c t N0019-76 -C-0250 , and t h e N a t i o n a l Sc ience F o u n d a t i o n under c o n t r a c t GK-M1972. Reid Smi th i s s u p p o r t e d by t h e Research and Development Branch o f t h e Depar tment o f N a t i o n a l Defence o f Canada. C . R i c h a r d Johnson , J r . p r o v i d e d v e r y h e l p f u l comments on a d a p t i v e c o n t r o l s y s t e m s . We a l s o r e c e i v e d many v a l u a b l e s u g g e s t i o n s f r om members o f t h e H e u r i s t i c Programming P r o j e c t a t S t a n f o r d * I n t h e f o l l o w i n g s e c t i o n s w e w i l l summarize two d i f f e r e n t approaches t o t h e c o n s t r u c t i o n o f sys tems t h a t can b e s a i d t o l e a r n . The f i r s t app roach c e n t e r s on t h e concep t o f an a d a p t i v e system and i s p r i m a r i l y a s s o c i a t e d w i t h r e s e a r c h i n p a t t e r n r e c o g n i t i o n and c o n t r o l t h e o r y : t h e second i s t h a t o f a r t i f i c i a l i n t e l l i g e n c e ( A l ) . 2 A d a p t i v e System Approach to L e a r n i n g I n t h e c o n t r o l l i t e r a t u r e , l e a r n i n g i s g e n e r a l l y assumed to be synonymous w i t h a d a p t a t i o n , and i s o f t e n v iewed a s e s t i m a t i o n o r s u c c e s s i v e approx imat i o n o f t h e unknown p a r a m e t e r s o f a m a t h e m a t i c a l s t r u c t u r e w h i c h i s chosen by t h e LS d e s i g n e r to represent t h e system under s t u d y [ 6 ] [ 1 0 ] . Once t h i s has been done , c o n t r o l t e c h n i q u e s known t o b e s u i t a b l e f o r t h e p a r t i c u l a r chosen s t r u c t u r e can be a p p l i e d . Thus t h e emphasis has been on pa rame te r l e a r n i n g , and t h e ach ievement o f s t a b l e , r e l i a b l e pe r f o rmance [ 2 5 ] . Prob lems a r e commonly f o r m u l a t e d i n s t o c h a s t i c t e r m s , and t h e use o f s t a t i s t i c a l p r o c e d u r e s t o a c h i e v e o p t i m a l pe r fo rmance w i t h r e s p e c t t o some pe r f o rmance c r i t e r i o n such a s t h e p r o b a b i l i t y o f c o r r e c t p a t t e r n c l a s s i f i c a t i o n , o r mean square e r r o r , i s s t a n d a r d [ 3 3 ] . There a r e many o v e r l a p p i n g and somet imes c o n t r a d i c t o r y d e f i n i t i o n s o f t h e t e rms r e l a t e d t o a d a p t i v e s y s t e m s . The f o l l o w i n g s e t , f o r m u l a t e d b y G l o r i o s o 111 ] s e r v e s t o i l l u s t r a t e t h e main f e a t u r e s . An a d a p t i v e sys tem is d e f i n e d as a sys tem wh i ch responds a c c e p t a b l y w i t h r e s p e c t t o some pe r f o rmance c r i t e r i o n i n t h e f a c e o f changes i n t h e e n v i r o n m e n t o r i t s own i n t e r n a l s t r u c t u r e , A l e a r n i n g sys tem i s a n a d a p t i v e sys tem t h a t responds a c c e p t a b l y w i t h i n some t i m e i n t e r v a l f o l l o w i n g a change i n i t s e n v i r o n m e n t , and a s e l f r e p a i r i n g sys tem i s one t h a t responds a c c e p t a b l y w i t h i n some t i m e i n t e r v a l f o l l o w i n g a change i n i t s i n t e r n a l s t r u c t u r e . F i n a l l y , a s e l f o r g a n i z i n g sys tem i s a n a d a p t i v e o r l e a r n i n g s y s t e m i n w h i c h t h e i n i t i a l s t a t e i s unknown, random, o r u n i m p o r t a n t . Other t e rms o f t e n used t o d e s c r i b e l e a r n i n g sys tems i n t h e p a t t e r n r e c o g n i t i o n and c o n t r o l l i t e r a t u r e a re " s u p e r v i s e d " and " u n s u p e r v i s e d " l e a r n i n g [ 5 l [ 1 0 J . S u p e r v i s e d l e a r n i n g , o r " l e a r n i n g w i t h t e a c h e r " , assumes t h e e x i s t e n c e o f an e x t e r n a l e n t i t y ( u s u a l l y a human) w h i c h p r e s e n t s t h e sys tem w i t h a s e t o f t r a i n i n g i n s t a n c e s , e v a l u a t e s t h e pe r fo rmance o f t h e sys tem f o r t h o s e i n s t a n c e s , and p r o v i d e s t h e c o r r e c t r e s p o n s e s . U n s u p e r v i s e d l e a r n i n g , o r " l e a r n i n g w i t h o u t t e a c h e r " , assumes t h a t t h e e n v i r o n m e n t p r o v i d e s a l l i n s t a n c e s , bu t does n o t p r o v i d e t h e c o r r e c t r e s p o n s e s . Per fo rmance i s t o b e e v a l u a t e d b y t h e sys tem i t s e l f . T s y p k i n [ 2 8 ] has p o i n t e d o u t t h a t u n s u p e r v i s e d l e a r n i n g i s somewhat o f a n i l l u s i o n i n t h e sense t h a t a t e a c h e r / d e s i g n e r d e f i n e s t h e s t a n d a r d s wh i ch d e t e r m i n e t h e q u a l i t y o f o p e r a t i o n o f t h e L S a t t h e o u t s e t , w h e t h e r o r n o t h e i s p r e s e n t d u r i n g t h e a c t u a l o p e r a t i o n o f
منابع مشابه
How Effectiveness Of Comprehensive Performance Measurement Systems on Manager's Performance Through Modification of Mental Models (Learning Process)
One of the ways to reduce agency costs is to plan for the creation of effective decision-making information by designing appropriate comprehensive performance evaluation systems according to managers' learning process One of the important factors in the processing and classification of information for cognitive learning is mental models that are categorized in two dimensions of mental model co...
متن کاملIterative learning identification and control for dynamic systems described by NARMAX model
A new iterative learning controller is proposed for a general unknown discrete time-varying nonlinear non-affine system represented by NARMAX (Nonlinear Autoregressive Moving Average with eXogenous inputs) model. The proposed controller is composed of an iterative learning neural identifier and an iterative learning controller. Iterative learning control and iterative learning identification ar...
متن کاملStable Rough Extreme Learning Machines for the Identification of Uncertain Continuous-Time Nonlinear Systems
Rough extreme learning machines (RELMs) are rough-neural networks with one hidden layer where the parameters between the inputs and hidden neurons are arbitrarily chosen and never updated. In this paper, we propose RELMs with a stable online learning algorithm for the identification of continuous-time nonlinear systems in the presence of noises and uncertainties, and we prove the global ...
متن کاملReachability checking in complex and concurrent software systems using intelligent search methods
Software system verification is an efficient technique for ensuring the correctness of a software product, especially in safety-critical systems in which a small bug may have disastrous consequences. The goal of software verification is to ensure that the product fulfills the requirements. Studies show that the cost of finding and fixing errors in design time is less than finding and fixing the...
متن کاملA Model for Effectiveness of E-learning at University
In the digital age, e-learning systems have been employed as new equipment in the higher education system in different universities. Consideringthe importance of optimization of this system, this research is aimed at providing a modelfor the effectiveness of e-learning at in higher education systems. The study is a descriptive survey study in terms of its data collection method.The population i...
متن کاملBilateral Teleoperation Systems Using Backtracking Search optimization Algorithm Based Iterative Learning Control
This paper deals with the application of Iterative Learning Control (ILC) to further improve the performance of teleoperation systems based on Smith predictor. The goal is to achieve robust stability and optimal transparency for these systems. The proposed control structure make the slave manipulator follow the master in spite of uncertainties in time delay in communication channel and model pa...
متن کامل